

Logiciel offline d'ATLAS et de son calorimètre à argon liquide

Johann collot

26 juillet 2001

ATLAS au LHC

Participation française :

Calorimètre Détecteur interne Filtre d'événements Spectromètre à Muons

~10% du coût ~200 participants dont ~25 personnes dans le logiciel

ATLAS LAr calorimeters

EM gap 0.9 mm - 2.7 mm twice between absorbers

FCAL gap thickness 0.25 - 0.4 mm

ATLAS : la mission

- Physique : Higgs ?, Supersymétrie ?, physique de précision (B , m_{top} , m_w ...) , phénomènes exotiques : extra-dimensions ?, neutrinos lourds
- Données : Plus de 150 M canaux , 100–200 Hz de déclenchement , 2 MO de données brutes par evt => 2,5 à 5 PO par an
- Flexibilité et Performance

Chaîne complète d'analyse FORTRAN

Développée jusqu'en 1999 pour le TDR de physique

ATLAS computing organization

Organization of ATLAS software

Since June 1999

	Offline Coordinator	Reconstruction	Simulation	Data Base Test beam
Chair	N. Mc Cubbin	D. Rousseau	K. Amako	D. Malon
				R.D. Schaffer
D	D. Barberis	D. Rousseau	F. Luehring	J. Pater
LAr	J. Collot	S. Rajagopalan	M. Leltchouk	R.Sobie Ph. Ghez
Tile	A. Solodkov	F. Merritt	A. Solodkov	T. Lecompte
Muon	G. Poulard	J.F. Laporte	A. Rimoldi	S. Goldfarb
Level 2		S. Tapprogge		
Trigger/DAQ	S. George		T Hansl-Kozanecki	A. Amorin
Event Filter	V. Vercesi	M. Bosman		F. Touchard

LAr Performance studies : e/γ: J. Beck–Hansen jet/Et miss : J. Pinfold Architecture team composition

- Katsuya Amako (KEK)
- Paulo Calafiura (LBNL)
- **Gilbert Poulard (CERN)**
- **David Quarrie (LBNL)**
- David Rousseau (Orsay)
- RD Schaffer (Orsay)
- **Graig Tull (LBNL)**

Directives

- Utilisation d'un langage objet : C++ , ouverture sur Java
- Méthodologie objet : USDP
- Séparation des états transitoires et persistants des objects
- Séparation des données et des algorithmes
- Tirer partie de l'acquis de la chaîne FORTRAN
 - intégration de modules FORTAN dans l'immédiat (F77, F90–95) si seule solution
 - ré–écriture d'algorithmes semblables en C++

Séparation des états transitoires

Séparation données - algorithmes

Traitement du signal : V = H I

Gaudi - Architecture

Calorimètre électromagnétique central

LAr data classes

GAUDI/ATHENA algorithms and LAr data classes

TDS = **Transient Data Store**

egamma Data Class

ATRECON/ATHENA

F. Malek

Simulation

- Geant 4
 - tests en cours
 - produit pour l'avenir
- Geant 3 (DICE , ATLSIM)
 - seul programme capable de simuler le détecteur complet
 - sera maintenu sur 2 à 3 ans

G4 ATLAS simulation

AGDD/G4Builder

Muons in EMB

G4.3.0R1

G3/G4 distributions statistically incompatible - K-S tests fail

incompatibility washed out because of the limited size of the test beam sample - More muons in the analysis pipe line .

Electron energy resolution in HEC

G4 EM resolution looks a bit too good

Programme

- Data challenge 0 (DC0) : Dec 2001
 - infrastructure DB
 - chaîne de reconstruction complète
 - simulation DICE
- DC1 : mi 2002
 - production : 10^7 Z+jets , ~ 10 TO
 - Partiellement fait avec G4
- DC2: 2003 ?
 - Geant4 complet
 - 50% de la complexité (DB , PC's , Grid ...)

G4 activities

- Activities have started in all sectors : very positive improvement slope
 - lots of the initial technical difficulties have been overcome
 - tests of physics (G4/G3, TB/G4) have started
- Use of AGDD/G4Builder is being evaluated
 - to read the geometry parameters
 - to automatically generate the G4 geometry code
- Preliminary results already there
 - presented at CHEP2000 and at CALOR2000 (4 talks)

Conclusion

- Transition FORTRAN/procédurale -> C++/Objet tjs en cours
- Nouveau programme de reconsruction pratiquement au même niveau que l'équivalent FORTAN (ATRECON)
- Geant3 -> Geant4 : ce sera long (2 ans encore ..)
- Data Base : des problèmes énormes à résoudre (25 à 50 PO sur 160 instituts , 40 pays)
- Nous avons besoin de plus en plus d'ingénieurs et de techniciens en informatique
- Également pas assez de physiciens
- travail d'équipes