

Le OFFLINE dans le projet ANTARES

Jurgen Brunner- Cargèse 2001

Physics generators

- Most complex for atm. Muonshowers
 primary flux atm. Shower muon propagation
- Mostly inherited from other projects
 KORSIKA (F77) (Kaskade) HEMAS (F77) (Macro)
- Muon propagation
 - PropMu (Macro) Mum (Baikal)

Detector Monte Carlo

Geant 3.21 (F77) with adaption for muon processes

"

above 100 TeV (ionisation, pair production, bremsstrahlung)

- Geant 4 (C++) Test phase, should finally replace Geant 3.21
- ^w km3 (F90, F77) Includes photon scattering in
- water ; based on prefilled tables very fast

Reconstruction/Calibration

Antcc C++ Common Framework of base classes,
 e.g.

Hit, Track, TrackFitter, FitStrategy Detector, OM, String, GPSTime etc.

- Several algorithms developped in this frame
- ⁻ 3DTrackFit, SingleStringFit, AcousticCalibration
- Development continues

Data Flow : Share between database and sequential data file

Use of CC-IN2P3 Resources CPU / Tapes / Disk

Database / Accounts

CC-IN2P3 is THE main computer centre of Antares

- all raw data will be stored there
- software repository under CVS
- main run/detector database installed there (Oracle)
- Web server http://antares.in2p3.fr
- Mailing lists under listserv

Development of CPU use (Lyon units)						
Year	1998	1999	2000	2001		
Hours	142,000	134,000	230,000	290,000 (June)		

Main platform: Linux (gcc, g77, g++)

Increasing CPU need (larger collaboration) (up to now only Monte Carlo) typical job: small I/O bandwidth but long (300,000 sec) Since 2000:

Largest MC production of atmospheric muon showers transferred to RAL However: Reconstruction at Lyon (2001: several new algorithms have been tested)

Common Disk Space

GROUP_DIR THRONG_DIR 36 Gbyte 2 Gbyte

Software

Compiler: gnu (egcs) g77, gcc, g++ (STL) commercial: F90 library: cernlib, clhep, root, geant4 commercial: naglib

Tapes

Year	1997 -1999	2000	2001 (estim.)
3490	271	90	150
DLT (import)		4	10
9840		5	10
Total(Gbyte)	270	350	700

2000: 350 Gbyte tape space used2001: 700 Gbyte tape sspace neededmost small files (100 Mbyte)

Accounts for an international collaboration

Last 3 years: Antares has substantially grown

1997: CPPM, CEA, Valencia, Oxford, Sheffield
1998: Birmingham, IRES, GRPHE, Moscou (52 accounts)
1999: NIKHEF, Bologna, Genova (81 comptes, 27 non-IN2P3)
2000: Catania, Bari, Roma (101 comptes, 39 non-IN2P3)

Collaboration size now: 169 persons, 87 physicists

Data base

Antares will use one main database for the following type of informations:

slow control detector geometry Calibration Book keeping

Choice:

Oracle

Master copy at Lyon Slave copy at Sablette (shore station) Update once per night

Network

From 2003 on: Problem of data transfer between Sablettes and Lyon

atm. muons: noise: event size: 30 Hz trigger rate 1500 Hz trigger rate 4 kbytes

Output DAQ: 0.1-6 Mbytes/sec per year: 3-150 Tbyte Local DLT + manuel transfer or transfer via network ? (autonomy 1 month - 1 day with robot 8 DLT)

Optional: Use advanced technology for first pass offline filter DataGRID

ANTARES

Data Repository and Main Computing Center: CC-IN2P3Lyon

(1% of input data)

CPU Time Constraints

- $10^9 5x10^{10}$ events per year
- Filter needs track reconstruction
 (non-linear minimisation): estimation
 4 Lyonsec/event
- Per year 10⁶-5x10⁷ Lyon-hours
 (1998-2000 Antares CPU use: 140,000 Lh)
- Too much for single batch farm

Application for Data Grid

Characteristics of Antares Filter

- Input stream: time ordered "events"
- No complicated hierarchical structure of event stream
- Easy to parallelise on basis of "events" or
 bigger time slices ("runs")
- No multi-user interface needed (main production)
- High bandwidth connection between Grid -farms
 needed
- Ideally shore station included as well
- output files small, can be copied where ever needed

Possible Schemes

Scheme 1

- Master copy of all data in Lyon
- Computing shared by local centers (RAL, NIKHEF, INFN)
- Cut data into time slices
- Send copy of certain slice to center with free resources
- Run identical reconstruction code everywhere
- Analysis code accesses reconstruction output, which remains distributed

Possible Schemes

Scheme 2

- Master copy of all data in Lyon
- Each local center specializes on one analysis topic
 (muon-tracks, low energy, supernovae, monopoles, neutralinos)
- A working copy of ALL data is sent to each local center (alternative: direct access to data via network)
- The results of a certain analysis can be obtained from the specialized center

Schedule

- Offline filter of Antares could be Testbed for
 DataGrid project
 - ? Earlier than LHC

"

- ? Data rate factor10-100 smaller
- ? relatively simple proram structure
- Bologna group is working on first version of offline filter, no time estimate yet

